

С

0

LSIC E&C/CC Focus Group Monthly http://lsic.jhuapl.edu/ http://lsic-wiki.jhuapl.edu/ (Confluence sign-up required)

U

m

May 29, 2024

Lunar Surface Innovation

[·] R

· T

Ν

S^o O

E&C: Jibu Abraham, Sarah Hasnain, Athonu Chatterjee, Raymond Lu, Claudia Knez CC: Lindsey Tolis, Danielle Mortensen, Angela Stickle, Milena Graziano, Mario Lento, and team!

Facilitator_ExcavationConstruction@jhuapl.edu Facilitator_Crosscutting@jhuapl.edu

Lunar Surface Innovation

Overview

- General updates and house-keeping 10 minutes
 - Logistical Information
 - Upcoming Meetings
 - Funding Opportunities
- Overview of Master Planning 10 minutes
- Panel Discussion 20 minutes
- Speaker/Panel Q&A 20 minutes
- Breakout Sessions! 30 minutes

Logistical Information

E&C Website

E&C Confluence

How to Contact us!

Facilitator_ExcavationConstruction@jhuapl.edu Facilitator_Crosscutting@jhuapl.edu

Need Confluence Access? Isic-wiki-admins@listserv.jhuapl.edu

Upcoming Meetings

- Space Resources Roundtable (June 4-7)
 - https://learn.mines.edu/srr/
 - Registration is open!
- International Conference on Environmental Systems (ICES) (July 21-25)
 - https://www.ices.space/call-for-paper-2024/
 - Sessions include: "Advanced Technologies for In-Situ Resource Utilization", "Space Architecture", "Planetary and Spacecraft Dust Properties and Mitigation Technologies", "Human/Robotics System Integration"

NASA Solar System Exploration Virtual Institute (SSERVI) (July 23-25)

- https://sservi.nasa.gov/nesf2024/
- Abstract submission closed

• ASCEND (July 30-August 1)

- <u>https://www.ascend.events/</u>
- Registration open!

Funding & Opportunities

SBIRs and STTRs

- Open SBIRs and STTRs can be found here: <u>https://www.sbir.gov/solicitations/open</u>
- Early Stage Innovation (ESI)
 - <u>https://nspires.nasaprs.com/external/solicitations/summary.do?solId={EA55B699-3845-233F-9CB7-5B013BAA8F2C}&path=&method=init</u>
 - Proposals Due June 6th
 - University-led, possibly multi investigator, efforts on early-stage space technology research of high priority to NASA's Mission Directorates
 - Topic 1: Computational Materials Engineering for Lunar Metals Welding
 - Topic 2: Passive Lunar Dust Control through Advanced Materials and Surface Engineering

• Development and Advancement of Lunar Instrumentation (DALI)

- <u>https://nspires.nasaprs.com/external/solicitations/summary!init.do?solId={C5EA26E3-2ACF-C494-B065-46C9A48F265D}&path=open</u>
- Step-2 Proposals due June 26th
- Lunar Mapping Program
 - <u>https://nspires.nasaprs.com/external/solicitations/summary!init.do?solId={83A89224-E78F-56D5-F16C-04775814C47A}&path=open</u>
 - Proposals Due June 12th

Lunar Launch and Landing Facilities Workshop

- Tuesday July 23rd, 2024
- Virtual Workshop hosted by LSIC Excavation & Construction
- Sessions Include:
 - Vision for Deploying Landing and Launch Facilities (LLFs) for a sustained presence on the Moon
 - Top Level Design Expectations for LLF
 - LLF Trade Space Considerations
 - State of the Art Landing Pad Analyses Plume Surface Interaction Analyses and Failure Modes
 - Construction Options and Supporting Infrastructure
 - Networking
 - Registration is free and required Closes July 11th

FINAL COMPETITION & WINNER EVENT

JUNE 11TH, 8AM-4PM CT & JUNE 12TH, 8AM-6PM CT

YOU'RE INVITED:

This event is free and open to the public, government, NASA, industry, academia, and stakeholders

WITNESS GREATNESS:

After two days of live competitions, up to two finalists will receive a share of the \$1.5 million grand prize!

HOSTED BY:

NASA's Centennial Challenges

Representing NASA's Space Technology Mission Directorate's Prizes, Challenges & Crowdsourcing

LOCATION:

Alabama A&M University's Agribition Center 4925 Moores Mill Rd Huntsville, Alabama

F 🖸

MORE INFO: NASA.GOV/WINIT • @NASAPRIZE

Motivation & Objectives

Successful missions are and will be the culmination of years of dedicated and consistent effort by NASA, the industrial base, and international partner space agencies – a direct result of teamwork and consistent support of external stakeholders. – NASA M2M Objectives Document

As the nation returns to the Moon there is a need to develop a shared vision for a Lunar base infrastructure. One that can support NASA led missions and complement industry needs.

Objective: Develop a community driven notional lunar infrastructure master plan recommendation. The plan will include:

- 1) Near Term Goals Capture Lunar Infrastructure Vision
- 2) Long term goals -
 - 1) Identification of the functional needs
 - 2) Identification of key trades
 - 3) Identification of technology gaps
 - 4) Aggregate SOTA for horizontal and vertical construction elements and processes
 - 5) Develop Vignettes for surface activities
 - 6) A notional site plan

Lunar Surface Innovation

C O N S O R T I U M

Overall Process

Lunar Surface Innovation

Technical Agenda

- Overview of Master Planning 10 minutes
 - Ann Esbeck (Chief Innovation Officer Bechtel Corporation)
 - Komal Dewan (Senior Vice President AECOM)
- Panel Discussion 20 minutes
 - David Zuniga (Senior Director Axiom Space): Tourism / Commercial Space
 - Dave Blewett (Principal Staff JHU Applied Physics Lab): Science
 - Stephen Indyk (Director Space Systems Honeybee Robotics): Utilities
 - Laeeque K Daneshmend (Chair in Mine-Mechanical Engineering Queens University): Mining
- Speaker/Panel Q&A 20 minutes
- Breakout Sessions! 30 minutes

Overview of Master Planning

Ann Esbeck Bechtel

Roberto deMoreas AECOM

3 June 2024 11

Panel Discussion

Dave Blewett

JHU Applied Physics Lab

Science

APL

Laeeque Daneshmend

Queens University

Mining

Stephen Indyk

Honeybee Robotics

Utilities

David Zuniga

Axiom Space

Commercial Space / Tourism

3 June 2024 12

Breakout Sessions!

We will now move into a 20-minute breakout session! You will be randomly sorted into a breakout room (all identical) with an APL facilitator to work through the Miro activity. Have fun!

Miro Activity here! \rightarrow

Lunar Surface Innovatior

Ideas on Science Infrastructure at a Lunar Base

David T. Blewett Moon and Rocky Planets Group JHU Applied Physics Lab

Joint meeting of the LSIC Excavation & Construction and Cross-Cutting Focus Groups 2024 May 29

- Top Level Lunar Vision Statement
 - \circ How would you fill in this Vision Statement?
 - By 2054 we will have power, crew quarters, support staff, and lab space to support 20 scientists in order to enable a full portfolio of scientific research in multiple disciplines.
- Stakeholder Vision
 - $\circ~$ Look to 2054 What surface activities do you hope to facilitate?
 - Lunar/Planetary Geoscience
 - Lunar Environment
 - Heliophysics/Space Physics
 - Astronomy/Astrophysics
 - Biological / Materials Sciences

- Interactions
 - What components of the lunar infrastructure are required to support the stakeholder?
 - Power, living and work space for human staff (safe from radiation and micrometeoroids), reliable supply of consumables needed for the human staff, transportation to and from field sites.
- Challenges and Solutions
 - Identify major challenges your community anticipates in the development and sustainability of the lunar base.
 - Funding, changing priorities.
 - \circ Propose potential solutions or approaches to overcome these challenges.
 - Public-private partnerships, e.g. CLPS; Contribution of international partners.
- Collaboration Opportunities
 - What is the role of governmental stakeholders in enabling collaboration? When is this direction necessary?
 - Model of the U.S. Antarctic Program U.S. leadership in science.
 - Suggest how collaborations with other stakeholders could enhance the effectiveness and sustainability of the lunar base.
 - Cooperation with tourism or mining could help to sustain the science operations.

• Lunar & Planetary Geoscience

- "Wet" lab for analysis of rocks and soils: sieving, sawing for preparation of thin sections, binocular microscopes, petrographic microscopes, small scanning electron microscope, field/lab spectrometer (UV-vis-NIR, mid-IR).
- Core cold-storage facility Keep drill cores (ice, or ice/volatile-bearing regolith) frozen, with area for preparation of samples. Need to be able to transport the cores from the drill site to the storage facility and maintain low temperatures.
- Lab for analysis of volatiles Mass spectrometer, etc. for research similar to that done by the teams that studied the *Apollo 17* pristine samples (ANGSA).
- Rock magnetism lab possibly separated from other infrastructure.
- Seismometers, heat-flow packages deployed at the base and at remote locations.

• Lunar Environment

- Micrometeoroid impact detector (high speed) near the main base to assess impacts from lander arrivals/departures; others at shielded locations to measure natural hypervelocity impacts.
- Detector for levitated surface dust (low speed) near the main base to assess dust stirred by lander arrivals/departures and human/rover activities; others at locations to measure natural electrostatic dust motions.
- Lunar atmosphere/exosphere neutral mass spectrometer, ultraviolet-visible spectrometer.

APL

- Heliophysics/Space Physics
 - Ion/electron spectrometers plasma studies
 - Magnetometers

- Astronomy/Astrophysics*
 - UV-Vis-IR telescopes away from dust, vibration disturbance at the human base. Needs site prep/foundation. Distributed systems to get wide field of view or for interferometry.
 - Energetic particle detectors.
 - Low-frequency radio telescope can be a thin sheet deployed over the ground covering a large area.
 - High-frequency radio telescope likely needs site prep and a foundation like an optical telescope.

APL

- Biological / Materials Sciences
 - 1/6 G is useful for some research. Wet-chemistry lab.

- Considerations for all
 - Power
 - Communications
 - Need for site preparation (leveling, foundation)?

THE ROBERT M. BUCHAN DEPARTMENT OF MINING Joint LSIC Communities Meeting Excavation & Construction / Cross-Cutting On-Line – May 29, 2024

Long-Term Vision for Sustained Lunar Presence: 2054

A Mining Stakeholder Perspective

Laeeque Daneshmend

Noranda-Falconbridge Chair in Mine-Mechanical Engineering The Robert M. Buchan Department of Mining Queen's University, Kingston, Ontario, CANADA

Top Level Lunar Vision Statement - Mining

By 2054 we will be able to undertake **large-scale** mineral prospecting, **targeted** mineral exploration leading to economic ore body discovery and **selective** in-situ resource extraction to support dozens of diverse users on the lunar surface,

in order to enable growth

& sustainment of a viable lunar economy.

Top Level Lunar Vision Statement – Mining - DERISKING c.f. Terrestrial Mining Projects – Uncertainty vs Risks vs Value

[LePan, N., Visualizing the Life Cycle of a Mineral Discovery, Visual Capitalist, September 12, 2019 https://www.visualcapitalist.com/visualizing-the-life-cycle-of-a-mineral-discovery/]

By 2054 we will be able to undertake large-scale mineral prospecting, targeted mineral exploration leading to economic ore body discovery and selective in-situ resource extraction to support dozens of diverse users on the lunar surface, in order to enable growth & sustainment of a viable lunar economy.

Mining Stakeholder Vision:

Accelerating Scale-Up Across the Lunar ISRU Value Chain

Construction

nfrastructure

Mining

Power

Surface activities – scale-up

facilitated / supported / enabled by Mining

- Construction
- Material Processing
- Manufacturing
- Transportation
- Communications
- Power Generation & Transmission
- Maintenance of Infrastructure & Equipment

 including Habit Sustainment

Supports Required

reciprocal... SYNERGIES!

- Construction (infrastructure, machines,...)
- Materials Processing (mineral processing)
- Manufacturing (machines, consumables)
- Manufacturing• Transportation (*infrastructure, machines,...*)
 - Communications (infrastructure)
 - Power Generation & Transmission (infrastructure)
 - Maintenance of Infrastructure & Equipment

 including Habit Sustainment
 (parts and consumables)

Lunar Mining Challenges (& Solutions?)

CHALLENGES/GAPS

<u>Technical</u>

- Prospecting
- Exploration
- Excavation
- Mineral Processing

<u>Economic</u>

- ROI Value Proposition...
- Demand / Pull (chicken & egg!)

SOLUTIONS

Developments/Investments in

- Lunar Infrastructure for Remote Geosensing
- Lunar Geosciences & Geometallurgy
- Long-lived, modular, repairable, reconfigurable, nimble mobile machines for a variety of tasks

 Prospecting & Exploration
 Construction & Mining
- Minerals Processing & Materials Processing Systems

Economic Stimulus:

- An initiative to jump-start Demand...
 - Based on holistic approach that terrestrial mining industry uses for Derisking
 - Find viable orebodies, pool appropriate technologies, optimize extraction processes, establish downstream supply chains...

Collaboration: Needs / Opportunities

- Terrestrial Mining vs Lunar ISRU
 - $\,\circ\,$ Potential value for both communities to learn from each other e.g.
 - Iunar ISRU could benefit from how terrestrial mining achieves long-lived systems
 terrestrial mining could benefit from future advances in lunar machine autonomy
 ...
- Lunar Excavation & Construction vs Lunar ISRU / Mining

> obvious synergies and overlaps – designs, components,...

- Private Sector
 - > lunar ISRU could emulate Derisking business models from terrestrial mining
 - consortium approach with a commercial intent to pull technology and resources together, resulting in a venture that is similar to a mining company

(feel free to contact <u>Salar Javid</u> or myself regarding this)

- Role of governmental stakeholders
 - > Helping bridge the "cultural divide"
 - "Two solitudes" miners versus space geeks!

Honeybee Robotics Lunar Utilities May 29, 2024

Stephen Indyk Director of Space Systems Honeybee Robotics

LinkedIn <u>@Stephen-Indyk</u> sjindyk@honeybeerobotics.com

Utilities

Terrestrial

- Water
- Sewage
- Trash collection
- □ Recycling
- Electricity
- Communication
 - Phone
 - Internet
 - TV/Streaming
 - Postal
- □ Heating/Cooling

Lunar

- Power
- Thermal
- □ Communication
- □ Water
- 🛛 Air
- Recycling
- Waste management

Phases of Lunar Infrastructure

https://www.nasa.gov/wp-content/uploads/2020/12/artemis_plan-20200921.pdf?emrc=f43185 https://www.nasa.gov/wp-content/uploads/2023/10/werkheiser-and-sandersisru-tagged.pdf?emrc=65f8f69639324 https://medium.com/the-aerospace-corporation/regishell-a10fcef300a4

LAMPS Basics

LAMPS is a 10kW mobile, deployable, Lunar vertical solar array.

The goal of LAMPS is to jump start Lunar Permanence and provide affordable, asneeded power to a variety of end users.

Key elements of LAMPS:

- dragonSCALES flexible solar panels
- Scalable, deployable boom
- Dust tolerant electrical connectors
- Avionics with Honeybee flight heritage
- Self leveling subsystem
- Low temperature and dust tolerant actuators

LAMPS Deployment Sequence

Thank you!

Stephen Indyk sjindyk@honeybeerobotics.com www.linkedin.com/in/stephen-indyk

HONEYBEE ROBOTICS

Honeybee Robotics Proprietary - Do Not Distribute